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-Outline-

•  Neutrino Event characterization (ANN)
– Overall sample
– Located events (PhaseI & II)

• Kink characterization (ANN)

• Summary
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-Methods: Artificial Neural Networks-

•  ANN can be trained by MC generated events

•  A trained ANN provides multidimensional cuts for
data that are difficult to deduce in the usual manner
from 1-d or 2-d histogram plots.

•  ANN has been used in HEP

•  HEP Packages:

•JETNET

•SNNS

•MLP fit
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-ANN BASICS-
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Background

• Event sample characterized by two variables X and Y (left figure)

• A linear combination of cuts can separate “signal” from “background” (right fig.)

• Define “step function”

• Separate “signal” from “background”  with the following function:

 “Signal (x, y)” IN
 “Signal (x, y)” OUT
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• The diagram resembles a feed
forward neural network with
two input neurons, three
neurons in the first hidden
layer and one output neuron.

• Threshold produces the desired
offset.

• Constants ai,  bi  are the
weights wi,j (i and j are the
neuron indices).

-ANN BASICS-
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-ANN basics : Schematic-
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• Output of tj each neuron in the first hidden layer :

• Transfer function is the sigmoid function :

– For the standard backpropagation training procedure of neural
networks, the derivative of the neuron transfer functions must
exist in order to be able to minimize the network  error (cost)
function E.

–– Theorem 1 : Any continuous function of any number of variables onTheorem 1 : Any continuous function of any number of variables on
a compact set can be approximated to any accuracy by a lineara compact set can be approximated to any accuracy by a linear
combination of sigmoidscombination of sigmoids

–– Theorem 2 : Trained with desired output 1 for signal and 0 forTheorem 2 : Trained with desired output 1 for signal and 0 for
background the neural network function (output function tbackground the neural network function (output function tjj))
approximates the Bayesian  Probability  of an event being a signal.approximates the Bayesian  Probability  of an event being a signal.

-ANN BASICS-
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• Error function :                                           , where

–  p  :  runs over the events of the training set,
–  j   :  the index of an output neuron,
– dpj :  the desired output of neuron j in event p,
– tpj  :  the network output.

• All minimization methods use the computation of first order
derivatives:

• The description of backpropagation is that in each iteration
:

– ∆pwji(n+1) : the change in wji in iteration n+1,
– ε         : the distance to move along the gradient (‘learning

coefficient’)
– α              : a smoothing term  (“momentum ”)
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-ANN BASICS-

∑ ∂

∂
=

∂
∂

p ji

p

ji w
E

w
E

(n)wa
w
E1)(nw jip

ji
P

jip ∆ε∆ +
∂
∂−=+ , where



N. Saoulidou and  G. Tzanakos 9

The ANN output is the Bayes a posteriori probability & in the proofThe ANN output is the Bayes a posteriori probability & in the proof
no special assumption has been made on  the a priori P(S) and P(B)no special assumption has been made on  the a priori P(S) and P(B)
probabilities (absolute normalization)…..probabilities (absolute normalization)…..TRUE BUT THEIR VALUESTRUE BUT THEIR VALUES
DO MATTER ………(They should be what nature gave us)DO MATTER ………(They should be what nature gave us)
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    ANN analysis : Minimization of an Error (Cost) Function

-ANN Probability (review)-
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• Bayesian a posteriori probability :

•        ANN output : P(S/x)
•     ANN training examples : P(x/S) & P(x/B)
•     ANN number of Signal Training Examples P(S)
•     ANN number of Background Training Examples P(B)

The     MLP    (ann)    analysis
and the Maximum Likelihood
Method   ( Bayes  Classifier )
are equivalent.
(c11 c22 = cost for making the
correct decision &
c12 c21 = cost for making the
wrong decision ) 0.5P(S/x)P(S/x))(1P(S/x)

P(B/x)P(S/x)
P(x)

P(B)*P(x/B)
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-ANN probability (review)-



N. Saoulidou and  G. Tzanakos 11

-ANN Probability cont.-

P(S/x)=0.5

P(S/x)=0.1

•  Worse hypothetical case 1:
One variable characterizing the
populations, which is  identical for
S and B, therefore :

    P(S)=0.1 & P(B)=0.9
• If we train with equal numbers
for signal and background the
ANN will wrongly compute
P(S/x)=0.5

•  If we train with the correct
ratio for signal and background
the ANN  will correctly  compute
P(S/x)=0.1, which is exactly
what Bayes a posteriori
probability would give also.

ANN
output
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-ANN Probability cont.-

  P(S/x) =1

•  Best hypothetical case :
One variable characterizing the
populations, which is  completely
separated (different)  for S and B.

    P(S)=0.1 & P(B)=0.9

• If we train with equal numbers for
signal and background the ANN will
compute  P(S/x)=1.

•  If we train with the correct ratio
for signal and background the ANN
will again compute P(S/x)=1.

• In this case it does not matter
if we use the correct a priori
probabilities or not.

ANN
output

P(S/x) =1
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-Quantities that characterize an ANN-
Network output (selection) function for “background ”and “signal” events

S
Sefficiency C=

CC
C
BS

Spurity
+

=

B
Bioncontaminat C=

S = Total # Signal events

 B = Total # Background events

SC = Signal events above Cut

BC = Background events above Cut

signal
0 1

 background

cut

f(x) = P(S/x)



N. Saoulidou and  G. Tzanakos 14

-Goals of the ANN analysis involving
spectrometer information -

• Use Artificial Neural Network techniques to identify
and classify Neutrino Interactions on “event-by-event”
basis using topological and physical characteristics of
neutrino events derived from both experimental data as
well as MC generated interactions:

• CC  νµ   νe   ντ
• NC

• Requirement: MC should be capable of describing very
well the neutrino data.
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-Neutrino event Classification: Method-

• Method :
– Construct two sequential Neural Networks (ANN1 & ANN2)

that will be applied in the whole data set :

a) The first will distinguish  vµ CC  from  ve & vτ  CC + NC

b) The second will distinguish     NC    from           ve CC & vτ CC

All v’s
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-Training Set & Input Variables-
• For every period we construct a separate set of (2) ANN’s since every

period has different target configuration and thus different event
characteristics.

• For every period  we use 5000  MC events as a training set.
INPUT VARIABLES

HITS         Total number of DC hits
                  (Total number of MID hits in the  Central tubes)
EMCAL      Total energy deposition
                   Number of clusters

            Average Cluster energy
            Mean value of the Clusters angle  from the vertex  with respect to the z - axis

                   Standard deviation  of the Clusters angle
            Mean Absolute deviation of the of the Clusters angle  

                   Higher Moments of the Clusters angle :  a) Skewness b) Curtosis
            (Percentage of tracks with E/P < 0.3 (Muons))

TRACKS    Number of final tracks
            Number of DC tracks
           (Number of tracks that have more than 3 hits in the MID system (Muons))

OTHER    Total Pulse Height in the SF system

*** Comparing the MC distributions of these variables with REAL data we
found that with the  0.001 criterion they are considered compatible
according to the Kolmogorov Test
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-Output of ANN1 (vµCC - All the rest)-

• The performance of that network is satisfactory.

• With a cut @ 0.5 in the network output function we select “signal”
events and  on the same time “background” events with :

                     All the rest      efficiency 96 % -  purity  88 %
              vµ  CC          efficiency 73 % -  purity  96 %

vµ CC

cut

All the
rest
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-ANN1 (vµCC - All the rest) performance on
 MC & Real Data-

• The performance of the  output function of ANN1 in MC
events and in the experimental data set is very similar.

• That indicates that the results from ANN1 implementation
in the experimental data set  are quite reliable.

MC

DATA
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-Output of ANN2 (NC - ve CC )-

NC
ve CC

cut

• This network shows a quite good behavior and by choosing a cut @
0.5 we select  signal (NC ) and at the same time background
events (ve CC)  with :

                              NC           efficiency 68 % -  purity  80 %
              ve  CC          efficiency 86 % -  purity  76 %
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-ANN2 (NC - ve CC) performance on MC &
experimental  Data-

• The performance of the output function of  ANN2 in MC
and in the Experimental data set is very similar.

• That permits us to consider the results of ANN2 quite
reliable.

MC

DATA
(scaled)
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-Expected number of neutrino interactions per
run period & per emulsion module-

εεεε⋅⋅⋅= int.
v

exp. PPOT
POT
NN

Expected number        964 ± 235

Observed number           909

Difference             55 ± 235

Ratios (%)             νµ CC         νe CC      ντ CC          NC
Expected     40.9±4.2     32.9±4.0       3.2 ±1.0       22.9±0.1
ANN ‘expected’    32.3±2.4     36.3±3.9        ------       31.4±2.0

ANN observed     34.3±1.6     36.0±1.6        ------        29.7±1.5

Difference         2.0 ±2.9      0.3 ±4.0                         1.7 ±2.5

Numbers       νµ CC           νe CC       ντ CC          NC

Expected               395 ±118      317 ±72         31±11         222 ±37

ANN ‘expected’    312 ± 92      350 ±79        ------        303 ± 75

ANN observed     312 ± 15      327 ±15         ------        270 ± 15

Difference            0 ± 93       23 ± 80                          33 ± 76

Good agreement
(within ~ 1 σ)
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-Phase I & II -

•  Muon CC events , current definition :     3 hits in the MID prop. tubes

•  Muon CC events,  ANN training :           3 hits in the MID

•   From the 162 muon CC events from Gina :
                    158 are characterized as muon CC by the ANN also.

                     98 % agreement

•  The ANN has characterized as muon CC an additional number of 23 events
out of which:

                     5 are “clear ” muons (and should be added to the list)

                    18 have (or had) reconstructed tracks with hits in the MID

                        that fail the standard criteria.

•  From Bruce’s analysis  ~ 19 events out of the 118 ANN nue CC events look
like NC events

•  From the comparison between the ANN characterization and Bruce’s
analysis, as far as the nue CC events are concerned, the agreement is quite
high and of the order of 85 %

≥
≥
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-ANN for vτ CC - NC scattering-

• Goal : To separate vτ CC interactions from hadron
scattering from NC interactions with the use of ANNs

• Input Variables :
– Daughter Momentum
– Decay Length
– Parent angle
– Daughter angle
– ∆φ  (between the parent and all the other primary tracks)

• Training Set  :
– 20000 vτ  CC interactions
– 20000 hadron scattering NC interactions



N. Saoulidou and  G. Tzanakos 24

 -MC Distributions of vτ CC &
hadron scattering events-

Daughter PT Parent  Angle

ντ  CC  (black)

Hadron Scattering
(red)
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-ANN vτ CC - hadron scattering cont.-

Efficiency, Purity  and contamination
Output ANN function (in log scale) (momentum smeared by 30%)

•The performance of the ANN is quite satisfactory as far as its discriminating
power is concerned. With the cut@ 0.5 we select tau decays with

 ~99% efficiency & ~99% purity
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-ANN vτ CC - hadron scattering results
on the 37 recognized kinks-

EVENTS THAT EXCEED THE 0.5 CUT IN THE ANN OUTPUT FUNCTION
RUN  EVENT  Pd      θd            PT      Ld        θp     ∆φ   Probabilities
3263 25102  1.900  0.1300  0.247 1890.1  0.1772  0.176   0.136***
3024 30175  2.900  0.0936  0.271 4504.8  0.0279  1.027   0.971
3039  1910  4.600   0.0895  0.412  276.5  0.0653  2.684   1.000
3333 17665 21.400  0.0130  0.278  564.6  0.0154  2.806   1.000
3193  1361 20.000  0.0187  0.374 1863.6  0.0838  2.341   1.000 CHARM

• Considering  as “Signal” events (vτ CC) the ones with probabilities P > 0.5 we
can  compute  the background to these events by adding 1-P. Therefore :

Bkg = 0.029

Data
 MC

∆p/p=30%
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- Characteristics of Selected ANN events-

PT of experimental kinks
PT of MC kinks for hadron
scattering events (red)
and tau decays (black)
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- Characteristics of Selected ANN events cont.-

MC, Hadron scattering: Black  MC, Tau decays: Yellow Data, Selected candidates : Red

Decay Length

Daughter momentum Daughter PT Parent angle

Daughter angle ∆φ



N. Saoulidou and  G. Tzanakos 29

-MC Distributions of vτ CC &
Charm events-

Daughter Momentum Parent angle

Charm one prong
kink decays (red)
ντ  CC (black)
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-ANN vτ CC - charm one prong kink decay-

Efficiency, Purity  and contamination
Output ANN function (in log scale)  (momentum smeared by 30%)

•  The  classification is poor (as expected), since all variables
characterizing these two populations are almost identical.

• However the event probabilities obtained from this ANN analysis can
be used to compute the background from this second source (charm one
prong kink decays where the lepton from the primary is missed)
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-ANN vτ CC - charm one prong kink decay
background estimation-

RUN  EVENT  Pd         θd            PT      Ld        θp             ∆φ        Prob.
3024 30175   2.900 0.0936  0.271 4504.8 0.0279  1.027   0.710
3039  1910   4.600 0.0895  0.412  276.5  0.0653  2.684   0.990
3333 17665 21.400 0.0130  0.278  564.6  0.0154  2.806   0.990
3193  1361 20.000 0.0187  0.374 1863.6  0.0838  2.341   0.990 CHARM
 We compute the background to these events by adding 1-P. Therefore :

   Bkg = 0.310

∆P/P=30%
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ντ CC 1-prong observed  :  Ns=3.00 Bkg=0.34 individual event probabilities

 (ντ CC 1-prong observed     : Ns= 4.00 Bkg= 0.34 PT cut)

Poisson Probability of the Background fluctuating to the Signal Level :
 2.3 x 10-5 ( 4 x 10-4 )

 ντ CC 1-prong expected   :  5.3 ± 1.6

ντ CC candidates observed :  6
 ντ CC  expected          : 6.3 ±1.8

Total Charm events observed : 8
Charm events observed             : 6.9 ±1.8

– Charged Charm events observed : 4
– Charged Charm events observed    : 3.0 ±1.2

• Charged Charm 1-prong events observed : 3
• Charged Charm 1-prong events observed      : 1.3 ±0.5

-Tau neutrino CC and Charm interactions-
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Vertex predictions & Event location
status

• We have send ~ 20 vertex predictions for
“clean” events.

• We have processed the 7 new m-files  send
to us by Nonaka and located 4 events.
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-Summary-
• The ANN analysis for neutrino event characterization

is in agreement with what expected and in good
agreement with the other independent methods (from
Gina & Bruce).

• The ANN analysis for kink characterization and
background estimation is also in good agreement with
all the other independent methods (from Byron and
Emily).

• We would also like to use this method for the trident
events as soon as the production of the MC files is
complete.

• We have completed all new vertex predictions related
with Phase II and processed (for event location) the 7
new m-files.


